Преобразование подобия. Подобные фигуры.Гомотетия

Подписаться
Вступай в сообщество «vidental.ru»!
ВКонтакте:

Пусть рассматривается некоторая фигура и фигура, полученная из нее преобразованием подобия (центр О, коэффициент k, см. рис. 263). Установим основные свойства преобразования подобия.

1. Преобразование подобия устанавливает между точками фигур взаимно однозначное соответствие.

Это значит, что при заданном центре О и коэффициенте подобия k всякой точке первой фигуры отвечает единственным образом определенная точка второй фигуры и что, обратно, всякая точка второй фигуры получена преобразованием единственной точки первой Фигуры.

Доказательство. То, что любой точке А исходной фигуры отвечает определенная точка А преобразованной фигуры, следует из определения, указывающего точный способ преобразования. Легко видеть, что, и обратно, преобразованная точка А определяет исходную точку А однозначно: обе точки должны лежать на одном луче при и на противоположных лучах при и отношение их расстояний до начала луча О известно: при Поэтому точка А, лежащая на известном нам расстоянии от начала О, определена единственным образом.

Следующее свойство можно назвать свойством взаимности.

2. Если некоторая фигура получена из другой фигуры преобразованием подобия с центром О и коэффициентом подобия k, то, и обратно, исходная фигура может быть получена преобразованием подобия из второй фигуры с тем же центром подобия и коэффициентом подобия

Это свойство, очевидно, следует хотя бы из рассуждений, приведенных при доказательстве свойства 1. Читателю остается проверить, что соотношение верно для обоих случаев: КО и

Фигуры, получаемые одна из другой преобразованием подобия, называют гомотетичными или подобно расположенными.

3. Любые точки, лежащие на одной прямой, преобразуются при гомотетии в щочки, лежащие на одной прямой, параллельной исходной (совпадающей с ней, если она проходит через О).

Доказательство. Случай, когда прямая проходит через О, ясен; любые точки этой прямой переходят в точки этой же прямой. Рассмотрим общий случай: пусть (рис. 266) А, В, С - три точки основной фигуры, лежащие на одной прямой; пусть А - образ точки А при преобразовании подобия.

Проведем покажем, что образы В и С также лежат на АК. Действительно, проведенная прямая и прямая АС отсекают на ОА, ОВ, ОС пропорциональные части: Таким образом, видно, что точки , лежащие на лучах ОВ и ОС и на прямой АК (аналогично получится и при являются соответственными для В и С. Можно сказать, что при преобразовании подобия всякая прямая, не проходящая через центр подобия, преобразуется в прямую, параллельную себе.

Из сказанного уже видно, что всякий отрезок преобразуется также в отрезок.

4. При преобразовании подобия отношение любой пары соответствующих отрезков равно одному и тому же числу - коэффициенту подобия.

Доказательство. Следует различать два случая.

1) Пусть данный отрезок АВ не лежит на луче, проходящем через центр подобия (рис. 266). В этом случае данные два отрезка - исходный АВ и ему подобно соответствующий АВ - суть отрезки параллельных прямых, заключенные между сторонами угла АОВ. Применяя свойство п. 203, находим , что и требовалось доказать.

2) Пусть данный отрезок, а значит, и ему подобно соответствующий лежат на одной прямой, проходящей через центр подобия (отрезки АВ и АВ на рис. 267). Из определения подобного преобразования имеем откуда, образуя производную пропорцию, находим , что и требовалось доказать.

5. Углы между соответствующими прямыми (отрезками) подобно расположенных фигур равны.

Доказательство. Пусть данный угол и угол, соответствующий ему при преобразовании подобия с центром О и некоторым коэффициентом k. На рис. 263, 264 представлены два варианта: . В любом из этих случаев по свойству 3 стороны углов попарно параллельны. При этом в одном случае обе пары сторон одинаково направлены, во втором - обе противоположно направлены. Таким образом, по свойству углов с параллельными сторонами углы равны.

Итак, доказана

Теорема 1. У подобно расположенных фигур любые соответствующие пары отрезков находятся в одном и том же постоянном отношении, равном коэффициенту подобия; любые пары соответствующих углов равны.

Таким образом, из двух подобно расположенных фигур любая может считаться изображением другой в некотором выбранной масштабе.

Пример 1. Построить фигуру, подобно расположенную с квадратом ABCD (рис. 268) при данном центре подобия О и коэффициенте подобия

Решение. Соединяем одну из вершин квадрата (например, А) с центром О и строим точку А такую, что Эта точка и будет соответствовать А в преобразовании подобия. Дальнейшее построение удобно провести так: соединим остальные вершины квадрата с О и через А проведем прямые, параллельные соответствующим сторонам АВ и AD. В точках их пересечения с О В и и будут помещаться вершины В и D. Так же проводим ВС параллельно ВС и находим четвертую вершину С. Почему ABCD также является квадратом? Обосновать самостоятельно!

Пример 2. На рис. 269 показана пара подобно расположенных треугольных пластинок. На одной из них изображена точка К. Построить соответствующую точку на второй.

Решение. Соединим К с одной из вершин треугольника, например с А. Полученная прямая пересечет сторону ВС в точке L. Находим соответствующую точку L как пересечение и ВС и строим искомую точку К на отрезке , пересекая его прямой ОК.

Теорема 2. Фигура, гомотетичная окружности (кругу), есть снова окружность (круг). Центры кругов подобно соответствуют.

Доказательство. Пусть С-центр окружности Ф радиуса R (рис. 270), О - центр подобия. Коэффициент подобия обозначим через k. Пусть С - точка, подобно соответствующая центру С окружности . (Мы еще не знаем, будет ли она сохранять роль центра!) Рассмотрим всевозможные радиусы окружности все они при преобразовании подобия перейдут в отрезки, параллельные себе и имеющие равные длины

Таким образом, все концы преобразованных радиусов разместятся вновь на одной окружности с центром С и радиусом R, что и требовалось доказать.

Обратно, любые две окружности находятся в гомотетичном соответствии (в общем случае даже двояком, с двумя разными центрами).

Действительно, проведем любой радиус первой окружности (радиус СМ на рис. 271) и оба параллельных ему радиуса второй окружности. Точки пересечения линии центров СС и прямых, соединяющих конец радиуса СМ с концами радиусов, параллельных ему, т. е. точки О и О" на рис. 271, могут быть приняты за центры гомотетии (первого и второго рода).

В случае концентрических окружностей имеется единственный центр гомотетии - общий центр окружностей; равные окружности находятся в соответствии гомотетии с центром в середине отрезка .

Примеры

  • Каждая гомотетия является подобием.
  • Каждое движение (в том числе и тождественное) также можно рассматривать как преобразование подобия с коэффициентом k = 1 .

Подобные фигуры на рисунке имеют одинаковые цвета.

Связанные определения

Свойства

В метрических пространствах так же, как в n -мерных римановых , псевдоримановых и финслеровых пространствах подобие определяется как преобразование, переводящее метрику пространства в себя с точностью до постоянного множителя.

Совокупность всех подобий n-мерного евклидова, псевдоевклидова, риманова, псевдориманова или финслерова пространства составляет r -членную группу преобразований Ли , называемой группой подобных (гомотетических) преобразований соответствующего пространства. В каждом из пространств указанных типов r -членная группа подобных преобразований Ли содержит (r − 1) -членную нормальную подгруппу движений.

См. также

Wikimedia Foundation . 2010 .

  • Преобразование графиков функций
  • Преобразование плоскости

Смотреть что такое "Преобразование подобия" в других словарях:

    преобразование подобия - Изменение характеристик моделируемого объекта посредством умножения его параметров на значения таких величин, которые преобразуют сходственные параметры, обеспечивая этим подобие и делая математическое описание, если оно имеется, тождественным… …

    преобразование подобия - panašumo transformacija statusas T sritis fizika atitikmenys: angl. transformation of similitude vok. Ähnlichkeitstransformation, f; äquiforme Transformation, f rus. преобразование подобия, n pranc. conversion de similitude, f; transformation de… … Fizikos terminų žodynas

    ПРЕОБРАЗОВАНИЕ ПОДОБИЯ - см Гомотетия … Большой энциклопедический политехнический словарь

    преобразование подобия - Изменение количественных характеристик данного явления посредством умножения их на постоянные множители, преобразующие эти характеристики в соответствующие характеристики подобного явления … Политехнический терминологический толковый словарь

    Преобразование - (в кибернетике) изменение значений переменных, характеризующих систему, например, превращение переменных на входе предприятия (живой труд, сырье и т.д.) в переменные на выходе (продукты, побочные результаты, брак). Это пример П … Экономико-математический словарь

    преобразование (в кибернетике) - Изменение значений переменных, характеризующих систему, например, превращение переменных на входе предприятия (живой труд, сырье и т.д.) в переменные на выходе (продукты, побочные результаты, брак). Это пример П. в ходе вещественного процесса. В… … Справочник технического переводчика

    ПРЕОБРАЗОВАНИЕ - замена одного математического объекта (геометрической фигуры, алгебраической формулы, функции и др.) аналогичным объектом, получаемым из первого по определенным правилам. Напр., заменяя алгебраическое выражение x2+4x+4 выражением (x+2)2,… … Большой Энциклопедический словарь

    Преобразование плоскости - Здесь собраны определения терминов из планиметрии. Курсивом выделены ссылки на термины в этом словаре (на этой странице). # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф … Википедия

    Преобразование - одно из основных понятий математики, возникающее при изучении соответствий между классами геометрических объектов, классами функций и т.п. Например, при геометрических исследованиях часто приходится изменять все размеры фигур в одном и… … Большая советская энциклопедия

    преобразование - я; ср. 1. к Преобразовать и Преобразоваться. П. училища в институт. П. сельского хозяйства. П. механической энергии в тепловую. 2. Коренное изменение, перемена. Крупные социальные преобразования. Заняться хозяйственными преобразованиями. ◁… … Энциклопедический словарь


ГЕОМЕТРИЯ
Планы-конспекты уроков для 10 классов

Урок 50

Тема. Преобразование подобия и его свойства

Цель урока: формирование знаний учащихся о сходстве пространственных фигур, изучение свойств преобразования подобия и применение их к решению задач.

Оборудование: модели куба и тетраэдра.

Ход урока

И. Проверка домашнего задания

1. Коллективное обсуждение контрольных вопросов № 9-11 и решения задач № 23-25 (1).

2. Математический диктант.

При параллельном переносе точка А переходит в точку В: вариант 1 - А (6; 7; 8), В (8; 2; 6 ); вариант 2 - A (2; 1; 3), В(1; 0; 7). Запишите:

1) формулы параллельного переноса;

2) координаты точки С, которая образовалась в результате параллельного переноса точки О (0; 0; 0);

3) координаты точки D , которая образовалась в результате параллельного переноса точки С;

4) координаты точки F , в которую перешла точка M (1; 1; 1 ) в результате параллельного переноса;

5) формулы параллельного переноса, при котором точка В перейдет в точку А.

Ответ. Вариант 1. 1) х1 = х + 2, у1 = у - 5, z1 = z - 2; 2) С(2; -5; -2); 3) D (4; -10; -4); 4) F (-1; 6; 3); 5) x 1 = х - 2, у1 = у + 5, z 1 = z + 2.

Вариант 2.1) x 1 = х - 1, y 1 = y -1, z 1 = z + 4 ; 2) C (-1; -1; 4); 3) D (-2; -2, -8); 4) F (2; 2; -3); 5) x 1 = x + 1, y 1 = y + 1, z 1 = z - 4.

II. Восприятие и осознание нового материала

Преобразование подобия в пространстве

Преобразование фигуры F в фигуру F 1 называется преобразованием подобия, если произвольные точки X и Y фигуры F переходят в точки X 1 и Y 1 фигуры F1 такие, что Х1Y 1 = k XY .

Преобразование подобия в пространстве, как и на плоскости, переводящее прямые в прямые, півпрямі в півпрямі, отрезки в отрезки и сохраняет углы между півпрямими.

Две фигуры в пространстве называются подобными, если они переводятся друг в друга преобразованием подобия.

Простейшим преобразованием подобия в пространстве является гомотетія.

Гомотетія относительно центра О с коэффициентом k - это преобразование, которое переводит произвольную точку Х в точку X1 луча ОХ, такую, что ОХ1 = k OX . (рис. 270).

Преобразования гомотетії в пространстве переводит любую плоскость, не проходящую через центр гомотетії, в параллельную плоскость (или в себя, когда k = 1).

Доказательство проводится так, как это сделано в учебнике.

Решение задач

1. Что представляет собой фигура, подобная куба с коэффициентом подобия: а) k = 2; б) k = ; в) k = 1?

2. Постройте фигуру, гомотетичну данном тетраедру ABCD относительно точки S (рис. 271) с коэффициентом гомотетії: а) k = 2; б) k = ; в) k = 1.

3. В какую фигуру переходит плоскость при гомотетії, если эта плоскость проходит через центр гомотетії?

4. Постройте фигуру, в которую перейдет куб при гомотетії относительно точки S (рис. 272) с коэффициентом гомотетії.

5. Треугольник АВС гомотетичний треугольник А1 В1 С1 относительно начала координат с коэффициентом гомотетії k = 2. Найдите координаты вершин треугольника А1 В1 С1 , если А (1 ; 0; 0), В (0; 3; 0), С (0; 0; - 3).

6. Задача № 29 из учебника (с. 56).

III . Домашнее задание

§4, п. 30 ; контрольные вопросы № 12-13; задача № 28 (с. 56).

IV. Подведение итога урока

Вопрос к классу

1) Что такое преобразование подобия? Перечислите его свойства.

2) Какое преобразование называется гомотетією с центром О и коэффициентом А?

3) В треугольной пирамиде SABC проведено сечение MNK так, что SM = 2MA , SK = 2KC , SN = 2NB (рис. 273). Укажите, какие из приведенных утверждений правильные, а какие - неправильные:

а) при гомотетії с центром S и коэффициентом точка М переходит в точку А;

б) при гомотетії с центром S и коэффициентом плоскость АВС переходит в плоскость MNK ;

в) AB = MN ;

г) при гомотетії с центром S и коэффициентом - пирамида SABC переходит в пирамиду SMNK .

4) В кубе ABCDA1 B1 C1 D1 проведено сечение BDC 1 и MNK , где точки М, N , К - середины ребер СС1 , ВС, DC (рис. 234). Укажите, какие из приведенных утверждений правильные, а какие - неправильные:

а) при гомотетії с центром С и коэффициентом 0,5 точка М переходит в точку C1 ;

б) при гомотетії с центром С и коэффициентом 2 плоскость MNK переходит в плоскость BDC1 ;

в) BD = 2 NK ;

г) площадь сечения BDC 1 в 4 раза больше площади сечения MNK.

1. Определение преобразования подобия. Непосредственным обобщением движений являются преобразования подобия. Преобразование А называется преобразованием подобия, если для этого преобразования существует такое положительное число подобия», что каковы бы были две точки , всегда

При этом, как всегда, через М обозначаем образ точки М. Если , то получаем изометрические преобразования, т. е. движения, являющиеся, таким образом, частным случаем преобразований подобия.

Замечание 1. Легко видеть, что преобразования подобия образуют группу - подгруппу в группе всех преобразований (плоскости, соответственно пространства).

2. Равномерное растяжение (гомотетия). Сначала рассмотрим простейшие преобразования подобия, так называемые равномерные растяжения, или гомотетические преобразования (гомотетии). Растяжением пространства (плоскости) с центром О и коэффициентом растяжения k называется преобразование А, состоящее в следующем:

V Точка О остается неподвижной.

2 Всякая точка переходит в точку М, лежащую на луче ОМ и определяемую на нем условием ОМ .

Таким образом, название «растяжение» соответствует наглядной картине преобразования лишь при наше «растяжение» в действительности оказывается сжатием.

Замечание 2. Так как векторы и ОМ лежат на одной и той же полупрямой, исходящей из точки О, то они имеют одно и то же направление. Поэтому из равенства следует и .

Докажем, что всякое растяжение является преобразованием подобия. В самом деле, пусть при растяжении с центром О и коэффициентом к точки переходят соответственно в точки и М, (рис. 150). Тогда . Треугольники подобны, и, значит, , что и требовалось доказать.

Докажем теперь, что растяжение с центром О и коэффициентом k есть аффинное преобразование. Можно ограничиться случаем плоскости.

Возьмем произвольный координатный репер с началом в центре данного растяжения (рис. 151). Пусть - произвольная точка плоскости, - ее образ при данном растяжении (координаты относительно репера ). Тогда имеем равенство , эквивалентное системе равенств

доказывающей наше утверждение.

Обратно, если в какой-нибудь аффинной координатной системе . Преобразование А записывается в виде (2), то оно есть растяжение с центром О и коэффициентом растяжения k. В самом деле, преобразование - А, оставляя точку О на месте, переводит всякий вектор в вектор , откуда и следует утверждение.

Итак, растяжение плоскости с центром О и коэффициентом k может быть определено как аффинное преобразование, которое в , и тогда непременно во всякой, аффинной системе координат с началом О записывается в виде (2).

Замечание 3. Мы всегда в качестве исходной системы координат можем выбрать прямоугольную систему.

Совершенно аналогичный результат имеет место и для пространства.

Замечание 4. Все растяжения с данным центром образуют группу - подгруппу группы аффинных преобразований (плоскости, соответственно пространства).

3. Представление преобразования подобия в виде произведения растяжения и движения. Из сказанного до сих пор еще не ясно, является ли всякое преобразование подобия аффинным преобразованием. Положительный ответ на этот вопрос содержится в следующей теореме, которая и представляет собою основной результат этого параграфа.

Теорема 11. Всякое преобразование подобия с коэффициентом подобия k есть аффинное преобразование, а именно произведение растяжения с тем же коэффициентом k и произвольным центром О на некоторое собственное или несобственное движение A.

Доказательство. Пусть Q есть растяжение с произвольным центром О и коэффициентом - L. При преобразовании длина каждого отрезка умножается на k, а при преобразовании Q она умножается на поэтому, если сделать сначала преобразование Q, а потом преобразование то получим преобразование при котором длина каждого отрезка остается неизменной. Другими словами, преобразование есть изометрическое преобразование, т. е. движение, собственное или несобственное.

ПРЕОБРАЗОВАНИЕ ПОДОБИЯ

Преобразование фигуры F в фигуру F" называется преобразованием подобия, если при этом преобразовании расстояния между точками изменяются в одно и то же число раз (рис. 1). Это значит, что если произвольные точки X, Y фигуры F при преобразовании подобия переходят в точки X", Y" фигуры F", то X"Y" = k-XY, причем число k -- одно и то же для всех точек X, Y. Число k называется коэффициентом подобия. При k = l преобразование подобия, очевидно, является движением.

Пусть F -- данная фигура и О -- фиксированная точка (рис. 2). Проведем через произвольную точку X фигуры F луч ОХ и отложим на нем отрезок ОХ", равный k?OX, где k -- положительное число. Преобразование фигуры F, при котором каждая ее точка X переходит в точку X", построенную указанным способом, называется гомотетией относительно центра О. Число k называется коэффициентом гомотетии, фигуры F и F" называются гомотетичными.

Теорема 1. Гомотетия есть преобразование подобия

Доказательство. Пусть О -- центр гомотетии, k -- коэффициент гомотетии, X и Y - две произвольные точки фигуры (рис.3)


Рис.3

При гомотетии точки X и Y переходят в точки X" и Y" на лучах ОХ и OY соответственно, причем OX" = k?OX, OY" = k?OY. Отсюда следуют векторные равенства ОХ" = kOX, OY" = kOY.

Вычитая эти равенства почленно, получим: OY"-OX" = k (OY- OX).

Так как OY" - OX"= X"Y", OY -OX=XY, то Х" Y" = kХY. Значит, /X"Y"/=k /XY/, т.e. X"Y" = kXY. Следовательно, гомотетия есть преобразование подобия. Теорема доказана.

Преобразование подобия широко применяется на практике при выполнении чертежей деталей машин, сооружений, планов местности и др. Эти изображения представляют собой подобные преобразования воображаемых изображений в натуральную величину. Коэффициент подобия при этом называется масштабом. Например, если участок местности изображается в масштабе 1:100, то это значит, что одному сантиметру на плане соответствует 1 м на местности.

Задача. На рисунке 4 изображен план усадьбы в масштабе 1:1000. Определите размеры усадьбы (длину и ширину).

Решение. Длина и ширина усадьбы на плане равны - 4 см и 2,7 см. Так как план выполнен в масштабе 1:1000, то размеры усадьбы равны соответственно 2,7 х1000 см = 27 м, 4х100 см = 40 м.

СВОЙСТВА ПРЕОБРАЗОВАНИЯ ПОДОБИЯ

Так же как и для движения, доказывается, что при преобразовании подобия три точки А, В, С, лежащие на одной прямой, переходят в три точки А 1 , В 1 , С 1 , также лежащие на одной прямой. Причем если точка В лежит между точками А и С, то точка В 1 лежит между точками А 1 и С 1 . Отсюда следует, что преобразование подобия переводит прямые в прямые, полупрямые в полупрямые, отрезки в отрезки.

Докажем, что преобразование подобия сохраняет углы между полупрямыми.

Действительно, пусть угол ABC преобразованием подобия с коэффициентом k переводится в угол А 1 В 1 С 1 (рис. 5). Подвергнем угол ABC преобразованию гомотетии относительно его вершины В с коэффициентом гомотетии k. При этом точки А и С перейдут в точки А 2 и С 2 . Треугольники А 2 ВС 2 и А 1 В 1 С 1 равны по третьему признаку. Из равенства треугольников следует равенство углов А 2 ВС 2 и А 1 В 1 С 1 . Значит, углы ABC и А 1 В 1 С 1 равны, что и требовалось доказать.

← Вернуться

×
Вступай в сообщество «vidental.ru»!
ВКонтакте:
Я уже подписан на сообщество «vidental.ru»